

Use the visual model to solve each problem.

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$\overline{\frac{2}{4} \times 3} =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

- 1.
- 2.
- 3.
- 4. _____
- 5. _____
- 6.
- 7. _____
- 8.
- 9. _____
- 10. _____
- 11. _____
- 12. _____

1)
$$\frac{4}{5} \times 6 =$$

12) $\frac{1}{4} \times 2 =$

Name:

Answer Key

Use the visual model to solve each problem.

 $\frac{1}{2} / 4 \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $\frac{1}{2}$ /₄ × 3 =

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$\frac{4}{5} \times 6 =$

Answers